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Abstract 

 
 The problem of classifying an image into different 
homogeneous regions is viewed as the task of clustering the 
pixels in the intensity space.  In particular, medical image 
segmentation is complex, and automatically detecting regions 
or clusters of such widely varying sizes is a challenging task.  
In this paper, we present automatic fuzzy k-means, and 
kernelized fuzzy c-means algorithms by considering some 
spatial constraints on the objective function.  The proposed 
algorithm incorporates spatial information into the 
membership function and the validity procedure for clustering.  
It starts by partitioning the given data into an arbitrary number 
of clusters.  These clusters are considered as an initial partition 
of the data.  The similar clusters that satisfy the validity 
function are merged into one cluster.  The proposed validity 
function is based on the intra-cluster distance measure, which 
is simply the distance between the center of the cluster and its 
neighbor cluster center multiplied by the objective function.  A 
first cluster is fetched; the second cluster is selected if it has 
the shortest distance between their two centers.  These clusters 
are merged together into one cluster if they satisfy the validity 
function; else the next cluster is fetched, and so on. The 
process stops only when all clusters are checked.  The number 
of clusters increases automatically according to the decision of 
validity function.  The most important aspect of the proposed 
algorithms is actually to work automatically to improve 
automatic image segmentation.  The proposed methods are 
evaluated and compared with the existing methods by applying 
them on various test images, including synthetic images 
corrupted with noise of varying levels and simulated 
volumetric Magnetic Resonance Image (MRI) datasets.  
 Key Words:  Image segmentation, medical imaging, fuzzy 
clustering. 

1 Introduction 

 Clustering is one of the most popular classification methods 
and has found many applications in pattern classification and 
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image segmentation [2, 6, 8-10, 12, 16].  Clustering algorithms 
attempt to classify a voxel to a tissue class by using the notion 
of similarity to the class.  Unlike the crisp k-means clustering 
algorithm [10], the FCM algorithm allows partial membership 
in different tissue classes.  Thus, FCM can be used to model 
the partial volume averaging artifact, where a pixel may 
contain multiple tissue classes [8-9].  The fuzzy c-means 
clustering (FCM) algorithms have recently been applied to 
MRI segmentation [6, 16].  Unlike the crisp k-means clustering 
algorithm (FKM) [2, 8-10, 12], the FCM algorithm allows 
partial membership in different tissue class.  Thus, FCM can 
be used to model the partial volume averaging artifact, where a 
pixel may contain multiple tissue classes [6].  A method of 
simultaneously estimating the intensity non-uniformity artifact 
and performing voxel classification based on fuzzy clustering 
has been reported in [6] where intermediate segmentation 
results are utilized for the intensity non-uniformity estimation.  
The method uses a modified FCM cost functional to model the 
variation in intensity values and the computation of the bias 
field is formulated as a variation problem.  However, in 
conventional FCM clustering algorithm, there is no 
consideration of spatial context between voxels since the 
clustering is done solely in the feature space. 

The kernelized fuzzy c-means (KFCM) [6-7, 16] used a 
kernel function as a substitute for the inner product in the 
original space, which is like mapping the space into higher 
dimensional feature space.  There have been a number of other 
approaches to incorporating kernels into fuzzy clustering 
algorithms.  These include enhancing clustering algorithms 
designed to handle different shape clusters [7].  More recent 
results of fuzzy algorithms have been presented in [15] for 
improving automatic MRI image segmentation.  They used the 
intra-cluster distance measure to give the ideal number of 
clusters automatically; more discussion can be found in [15].  
Also, possibilistic clustering which is pioneered by the 
possibilistic c-means (PFCM) algorithm was developed in [5, 
11, 17].  They had been shown that PFCM is more robust to 
outliers than FCM. However, the robustness of PFCM comes 
at the expense of the stability of the algorithm [17].  The PCM-
based algorithms suffer from the coincident cluster problem, 
which makes them too sensitive to initialization [5]. 
 Although fuzzy methods have several advantages such as: 
(1) it yields regions more homogeneous than those of other  
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methods, (2) it reduces the spurious blobs, (3) it removes noisy 
spots, and (4) it is less sensitive to noise than other techniques.  
The final number of clusters is still always sensitive to one or 
two user-selected parameters that define the threshold criterion 
for merging.  Though some compatibility or similarity measure 
can be applied to choose the clusters to be merged, no validity 
measure is used to guarantee that the clustering result after a 
merge is better than the one before the merge.  Partial results 
were stated in [4, 14] to answer the questions: “Can the 
appropriate number of clusters be determined automatically?  
And if the answer is yes, how?”  The number of clusters is 
determined by operating index procedures to whole data to 
determine the number of clusters before starting fuzzy 
methods.  This will consume much time for finding the 
suitable number of clusters.  Therefore, two major problems 
are known with the fuzzy methods:  (1) How to determine the 
number of clusters. (2) The computational cost is quite high for 
large data sets.   

In this paper, we develop the k-means, FCM, KFCM, and 
SKFCM algorithms that could improve MRI segmentation.  
The algorithms incorporate spatial information into the 
membership function and the validity procedure for clustering.  
The most important aspect of the proposed algorithm is 
actually to work automatically.  The alternative is to improve 
automatic image segmentation.  The performance of the 
proposed method is illustrated using synthetics and simulated 
volumetric MRI.  The rest of the paper is organized as follows.  
In Section 2, the cluster number is optimized.  The fuzzy 
validity function is stated in Section 3.  The proposed k-means 
clustering algorithm is presented in Section 4.  Section 5 
presents the FCM method.  In Section 6, KFCM is proposed. 
SKFCM is presented in Section 7.  Experimental results are 
presented in Section 8.  In Section 9 we present our 
conclusions and future work. 

2 Optimization of Cluster Number 

 Clustering analysis aims to place similar objects in the same 
groups.  The purpose is to get an idea about the sample 
dispersions and about the correlations between variables in the 
samples which include huge data.  However, many clustering 
algorithms necessitate pre-knowledge of the number of 
clusters.  The fact that the researchers do not have pre-
knowledge of the number of clusters in many studies make it 
impossible to know whether the end number of clusters is 
more or less than the actual number of clusters.  If the end 
number of clusters turn out to be less than the actual number of 
clusters, then one or more of the present clusters will have to 
unite; if it turns out to be more, then one or more of the present 
clusters will be divided.  The process of determining the opti-
mal cluster number is called cluster validity in general.  Thus, 
the accuracy of the end cluster number can be determined.  
 Recall that fuzzy algorithms seek to minimize the following 
objective function [8]: 
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Where )( ijij xuu =  is the membership of the i-th object xi  in 
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The constant m>1 in (1) is called the fuzzifier and controls the 
overlap (“smoothness”) of the clusters (a common choice is 
m=2).  As mentioned before, the simple enumeration strategy 
for optimizing the cluster number, as outlined in the 
introduction, is not practicable in an online setting as it 
requires the consideration of too large a number of candidate 
values and, hence, applications of the clustering algorithm.  

3 Fuzzy Validity Function 

 Since the fuzzy method aims to minimize the sum of squared 
distances from all points to their cluster centers, this should 
result in compact clusters.  The proposed method starts to 
subdivide the data a set of N  vector { }NjxX j ,,1, K==

 
into 

M clusters using well-known fuzzy methods [2, 8-9].  Assume 
the data is divided into M cluster, MRRR ,..,, 21 with centers 

Mccc ,..,, 21 respectively.  The proposed algorithm processes 
every two neighbor clusters individually, i.e., if we have three 
clusters CBA ,,  with centers Ac , Bc , and cc .  We start to 
hold our validity function between clusters A  and B  if    
 

  |||||||| cABA cccc −<−   (3) 

 
Our validity function is proposed to use the intra-cluster 
distance measure, which is simply the distance between a 
center of cluster A  and cluster center B  multiplied by the 
objective function of fuzzy.  We can define the validity 
function as: 
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Where )(BMax  and )(BMin  are the maximum and minimum 
values of clusters A  and B , respectively.  While BAC ∪  is the 
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center of the data ix  (of number n) of Aunion B  i.e., BA∪ . 

4 The Proposed K-Means Clustering Algorithm 

 K-means clustering is one of the simplest unsupervised 
classification algorithms [2, 8-9].  The procedure follows a 
simple way to classify the dataset through a certain number of 
clusters.  The algorithm partitions a set of N  vector 

{ }NjxX j ,,1, K==  into C  classes Cii ,,1  , K=ν , and 

finds a cluster center for each class ic denotes the centroid of 

cluster iν  such that an objective function of dissimilarity, for 
example a distance measure, is minimized.  The objective 
function that should be minimized, when the Euclidean 
distance is selected as a dissimilarity measure, can be 
described as: 
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point kx  and the cluster center ic .  The partitioned groups are 
typically defined by a ( )NC ×  binary membership matrix 
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where iR  is number of data point in class iν .  
 The following algorithm starts by partitioning the given data 
into arbitrary M clusters.  It can find the optimal cluster 
number with associated partition clusters Rk, k=1,2,.., M with 
centers Mccc ,..,, 21 and membership uij  respectively using 
the k-means clustering algorithm. 
 The proposed k-means clustering algorithm is described as 
follows: 
 

Algorithm1 
Initial: Subdivided the data into arbitrary M cluster using k-

means method. 
Input: data, Rk, k=1,2,.., M . 
Output: optimal cluster number. 
Put: k=1, t=2. 
Repeat 

Fetch Rk and Rt  satisfy Equation (3)   
     While Rk and Rt  satisfy Equation (3)   

 S=RkURt   
  Apply Equation (4) on Rk and Rt   

 Evaluate  1V , 2V  
          If  12 VV ≥  

 Rk and Rt  are merged into Rk cluster and  
Delete Rt. 

       Else still without merging 
     Estimate the center of new cluster (Rk) kc  
                     using Equations (7) and (6). 

t=t+1 
End While 

    Update: k=k+1 
End Repeat until for checked all regions. 
End 
 

5 The Proposed Fuzzy C-Means Algorithm 
 
 Fuzzy c-means clustering (FCM), also known as fuzzy 
ISODATA, is a data clustering algorithm in which each data 
point belongs to a cluster to determine a degree specified by its 
membership grade.  Bezdek [2, 8-9] has proposed this 
algorithm as an alternative to earlier k-means clustering.  FCM 
partitions a collection of N vector Nixi ,,1  , K= into C  fuzzy 
groups, and finds a cluster center in each group such that an 
objective function of a dissimilarity measure is minimized.  
The major difference between FCM and k-means is that FCM 
employs fuzzy partitioning such that a given data point can 
belong to several groups with the degree of belongingness 
specified by membership grades between 0 and 1.  In FCM, the 
membership matrix U is allowed to have not only 0 and 1 but 
also the elements with any values between 0 and 1.  This 
matrix satisfies the constraints: 
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The objective function of FCM can be formulated as follows: 
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Where iju is between 0 and 1; ic  is the cluster center of fuzzy  
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group i , and the parameter m  is a weighting exponent on 
each fuzzy membership (in our implementation, we set it to 2).  
Fuzzy partitioning is carried out through an iterative 
optimization of the objective function shown above, updating 
of membership iju and the cluster centers jc  by: 
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Similar to the k-means method, we use the validity measure, 
which is simply based on the intra-cluster distance measure, 
which is simply the distance between a center of cluster and its 
neighbors cluster center multiplied by the objective function as 
shown in Equations (3) and (4).  
 The proposed algorithm is described as follows: 
 
 
Algorithm2 
Initial: Subdivided the data into arbitrary M cluster using c-
means method. 
Input: data, Rk, k=1,2,.., M . 
Output: optimal cluster number. 
Put: k=1, t=2. 
Repeat

Fetch Rk and Rt  satisfy Equation (3)   
     While Rk and Rt  satisfy Equation (3)  

 S=RkURt   
  Apply Equation (4) on Rk and Rt   

Evaluate  1V , 2V  
          If  12 VV ≥  

 Rk and Rt  are merged into Rk cluster and  
Delete Rt. 

       Else still without merging 
     Estimate the center of new cluster (Rk) kc  
                     using Equations (10) and (11). 

t=t+1 
End While 

    Update: k=k+1 
End Repeat until for checked all regions. 
End 

 
 

6 Kernelized Fuzzy C-Means Method 
 
The kernel methods [5-7, 11, 15, 17] are one of the most 

researched subjects within the machine learning community in 
recent years and have widely been applied to pattern 
recognition and function approximation.  The main motives of 
using the kernel methods consist of:  (1) inducing a class of 
robust non-Euclidean distance measures for the original data 
space to derive new objective functions and thus clustering the 
non-Euclidean structures in data; (2) enhancing robustness of 
the original clustering algorithms to noise and outliers, and (3) 
still retaining computational simplicity.  The algorithm is 
realized by modifying the objective function in the 
conventional fuzzy c-means (FCM) algorithm using a kernel-
induced distance instead of Euclidean distance in the FCM, 
and thus the corresponding algorithm is derived and called as 
the kernelized fuzzy c-means (KFCM) algorithm, which is 
more robust than FCM.  In FCM, the membership matrix U is 
allowed to have not only 0 and 1 but also the elements with 
any values between 0 and 1, this matrix satisfies the 
constraints: 
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In this work, the kernel function K(x,c) is taken as the 
Gaussian radial basic function (GRBF): 
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where σ  is an adjustable parameter.  The objective function is 
given by: 
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The fuzzy membership matrix u can be obtained from: 
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The cluster center ic  can be obtained from:  
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Similar to algorithm 2, the proposed KFCM clustering 
algorithm is composed of the following steps: 
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Algorithm3 
Initial: Subdivided the data into arbitrary M cluster using c-
means method. 
Input: data, Rk, k=1,2,.., M . 
Output: optimal cluster number. 
Put: k=1, t=2. 
Repeat 
Fetch Rk and Rt  satisfy Equation (3)   
     While Rk and Rt  satisfy Equation (3)   
       S=RkURt   

  Apply Equation (4) on Rk and Rt   

          Evaluate  1V  , 2V  

          If  12 VV ≥  
 Rk and Rt  are merged into Rk cluster and  
Delete Rt. 

       Else still without merging 
     Estimate the center of new cluster (Rk) kc  
                     using Equations (15) and (16). 

t=t+1 
End While 

    Update: k=k+1 
End Repeat until for checked all regions. 
End 
 
 

7 Spatial Constrained SKFCM Method 
 
Since SKFCM is applied directly to image segmentation like 

KFCM, it would be helpful to consider some spatial 
constraints on the objective function [14].  This penalty term 
contains spatial neighborhood information, which acts as a 
regularizer and biases the solution toward piecewise-
homogeneous labeling.  Such regulization is helpful in 
segmenting images corrupted by noise.  The objective function 
is as follows: 
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Where jN  stands for the set of neighbors that exist in a 

window around jx  (do not include jx  itself) and RN  is the 

cardinality of jN .  The parameter α controls the effect of the 
penalty term and lies between zero and one inclusive.  An 
iterative algorithm for minimizing Equation (17) is derived by 
evaluating the centroids and membership functions that satisfy 
a zero gradient condition like the KFCM.  A necessary 
condition on iju  for Equation (17) to be at a local minimum or 
a saddle point is: 
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The proposed SKFCM algorithm is almost identical to the 
KFCM, except, Equation (18) is used instead of Equation (15) 
to update the memberships. 

8 Experimental Results 

The experiments were performed with several data sets.  The 
first experiment consists of two simple synthetic images 
(synthetic1 and synthetic2), one corrupted by 9 percent salt 
and pepper noise, and another corrupted by gaussian noise of 
standard deviation 50 respectively, and the image size is 
142×145 pixels, as shown in Figure 1a, and Figure 1b, 
respectively.  The second set includes simulated volumetric 
MR data consisting of 10 classes.  The advantages for using 
digital phantoms rather than real image data for validating 
segmentation methods include prior knowledge of the true 
tissue types and control over image parameters such as 
modality, slice thickness, noise and intensity in homogeneities.  
We used a high-resolution T1-weighted MR phantom with 
slice thickness of 1mm, 3 percent noise and no intensity in 
homogeneities, obtained from the classical simulated brain 
database of McGill University [3].  Two slices drawn from the 
simulated MR data is shown in Figure 1d and 1e. 
 The quality of the segmentation algorithm is of vital impor-
tance to the segmentation process.  The comparison score S for 
each algorithm is proposed in [1, 13, 16], which defined as:       
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where A represents the set of pixels belonging to a class as 
found by a particular method and Aref [1] represents the set of 
pixels belonging to the very same class in the reference 
segmented image (ground truth). 
 Another accuracy measure, segmentation accuracy (overall 
accuracy) S' is computed by dividing the total number of 
correct number of correct classified pixels over the total 
number of pixels [1, 13,16].  

The measure S is more conservative than defined S' in 
evaluating the segmentation quality as shown in the following 
example.  Assume we have a simple synthetic data set with 10 
pixels, which is plotted in Figure 2, and contains two classes, 
with 5 pixels in each class.  Assume the segmentation method 
is applied to these datasets, where the segmentation results 
gives 6 pixels in class1 and 4 pixels in class2.  The two 
measures will yield S=9/11, S'=9/10.  The value of S is lower  
as it penalizes the misclassification of the pixels more.  Thus 
we will use S in our experiments. 
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 (a) (b)       

 

 
(c)     (d) 

 

 
(e) 

 
Figure 1: Test images:  (a) Synthetic 1, (b) Synthetic 2, (c) 3D 

simulated data, (d) and (e) two original slices from 
the 3D simulated data (slice91 and slice100) 

 
 

 
 
Figure 2: Two accuracy measure evaluated on a two-class 

example 
 
 

 The proposed fuzzy methods have been implemented.  The 
Gaussian RBF kernel is used for KFCM and SKFCM.  We set 
the parameters M=100, m=2, σ =150, α =0.7 and RN  =26 
when using 3D MR phantom image, because the add noise is 
relatively big, otherwise we use α =0.1, and RN =8 (a 3 ×  3 

window centered around each pixel).  These values will be 
used in the rest of this work if no specific value is explicitly 
stated. 
 
8.1 Experiment on Synthetic1 
 
 We applied these algorithms to a synthetic test image; the 
synthetic image contains two class patterns corrupted by 9 
percent salt and pepper noise.  The performance of each 
segmentation method on this dataset is reported in the upper 
part of the first column of Table 1. 
 The table shows that the highest segmentation accuracy is 
obtained using SKFCM.  After that, KFCM gives better results 
than the other methods, as shown in Figure 3d. 
 
 

      
 (a)     (b) 

 
 (c)   (d)  

Figure 3: Segmentation results for the synthetic1 using 
methods: (a) k-means, (b) FCM, (c) KFCM,  
(d) SKFCM 

 
8.2 Experiment on Synthetic2  
 
 The performance of each segmentation method on the 4-
class synthetic image synthetic2 is reported in the upper part of 
the second column of Table 1.  Obviously, FCM gives the best 
segmentation performance, as shown in Figure 4b, and the 
least segmentation accuracy is obtained by applying the FKM.  
Note KFCM and SKFCM give similar accuracy. 
 We tested the efficiency of the accuracy for a synthetic2 
image with various degrees of standard deviation of gaussian 
noise.  Figure 5 depicts the relationship between accuracy 
results when the proposed FKM, FCM, KFCM, and SKFCM 
 

class1 class2 
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Table 1: Segmentation accuracy of individual methods and 
performance of implemented fusion techniques on 
synthetic1, synthetic2, and MRI volume dataset 

 Methods Synthetic1 Synthetic2 MRI volume 

FCM 0.91615 0.832537 0.52531 

KFCM 0.91597 0.835839 0.53341 

SKFCM 0.95286 0.835316 0.54708 

Th
e 

es
ta

bl
is

he
d 

m
et

ho
ds

 

k-means 0.926 0.8501 0.55394 

FCM 0.99123 0.8699 0.664 

KFCM 0.9895 0.8702 0.5987 

SKFCM 0.999 0.8821 0.231 

Th
e 

pr
op

os
ed

 
m

et
ho

ds
 

k-means 0.999 0.8976 0.432 
 
 
are applied to the synthetic2 image and various degrees of 
standard deviation of gaussian noise. 
 
8.3 Experiment on the Simulated 3D Data. 
 
 Table 1 shows the corresponding accuracy scores of the 
individual proposed methods after applying them on simulated 
data.  Obviously, the proposed k-mean and FCM give the best 
 

 segmentation performance, as shown in Figures 6a, 6b, 7a, 
and 7b, and the other methods gave similar accuracy. 
 

   
 (a) (b) 

 
 

 
 (c)  (d) 
 
Figure 4: Segmentation results for the synthetic2 using 

methods: a) k-means, (b) FCM, (c)KFCM, (d) 
SKFCM 

 

 
 
Figure 5: The relation between accuracy and standard deviation, when the proposed FCM, KFCM, and SKFCM are applied on 

synthetic2 image 
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 (a) (b)    

 

 
 (c)  (d) 

Figure 6: Segmentation results for the slice (z=91) on a 
simulated data using methods:  (a) k-means, (b) 
FCM, (c) KFCM, (d) SKFCM 

      
8.4 Experiment on the Real MR Data 
 
 Table 2 shows the corresponding accuracy scores of the 
 

 
 (a)   (b) 

 

  
 (c) (d)      

 
Figure 7: Segmentation results for the slice (z=100) on a 

simulated data using methods:  (a) k-means, (b) 
FCM, (c) KFCM, (d) SKFCM 

 
eight methods for the nine classes of real images (real brain 
image with nine classes).  Obviously, the proposed SKFCM 
acquires the best segmentation performance.  The proposed 
  

Table 2:  Segmentation accuracy ( % ) of eight methods on real brain classes 

Method 
Class 
1 

Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

Class 
9 

Overall 

K-
means 

62..96 57..53 77.84 91.61 66.47 77.18 85.96 43.6 99.15 73.47 

FCM 53..52 64.38 75.19 89.3 62.76 29.09 83.09 6.76 98.95 63.37 

KFCM 67.55 51.14 58.83 88.54 67.96 21.87 59.21 11.27 97.26 58.18 

SKFCM 75.46 71.88 88.65 93.76 96.63 82.31 55.70 1.50 96.82 73.64 

The 
proposed 
k-means 

66.76 63.76 77.65 89.54 67.96 65.43 90.43 51.27 99.54 74.70 

The 
proposed 

FCM 
67.87 67.16 78.34 88.54 98.65 94.65 87.43 55.32 99.43 81.92 

The 
proposed 
KFCM 

71.65 69.65 66.54 99.65 88.65 88.54 66.32 62.87 98.51 79.15 

The 
proposed 
SKFCM 

79.14 81.87 92.76 100.0 98.65 90.65 73.43 69.43 97.43 87.04 
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Table (3):  Comparisons of running time of eight algorithms on synthetic, phantom, and real images (seconds) 

Method  
FKM 

The 
proposed 
FKM 

 
FCM 

The 
proposed 
FCM 

KFCM 

 
The 
proposed 
KFCM 

SKFCM 

 
The 
proposed 
SKFCM 

Phantom 
image 

 
90.65 

 
100.65 105.87 144.76 118.54 155.76 287.43 24.43 

Real image 144.8 
 

155.76 
 

 
116.54 

 
166.76 223.87 104.87 154.76 287.9 

 
 
SKFCM is the best, and then the traditional SKFCM and 
KFCM.  The proposed KFCM and SKFCM methods are still 
more stable and achieve much better performance than the 
others for different classes. 
 
8.5 Time Overhead 
 
 These times have been computed from the time average of 
all given images that have same type.  For example, the time of 
phantom image using FKM 88.90 is obtained by computing 
the average of nine class times.  From this table, the 
established methods are much faster than the proposed 
methods for all tested data sets, due to the proposed methods 
consuming some time for obtaining the true number of 
segments but this time is acceptable for automatic medical 
image segmentation. 

 
9 Conclusion 

 
 The results of the proposed fuzzy segmentation methods 
have been presented.  Rather than tuning a method for the best 
possible performance, it works automatically and can indeed 
improve the segmentation accuracy over the existing methods.  
The algorithms incorporate spatial information into the 
membership function and the validity procedure for clustering.  
They have estimated accurate clusters automatically even 
without prior knowledge of the true tissue types and the 
number of cluster of given images.  Extensive experiments 
using MR images generated by the BrainWeb simulator [3] 
and real MR data have been used to evaluate the proposed 
methods.  Due to the use of soft segmentation, the proposed 
FCM algorithm is able to give a good estimation of tissue 
volume in the presence of inaccurate tissues.  It is observed 
that the proposed methods have shown higher robustness in 
discrimination of regions because of the low signal/noise ratio 
characterizing most of medical images data.  By comparing the 
proposed methods with established ones, it is clear that our 
algorithms can estimate the correct tissues much more 
accurately than the established algorithms.  Although the 
number of clusters are varied according to noise factor, we 
have shown that the proposed SKFCM gives a correct number 
of clusters with high noise levels.  On the other hand, the 
established KFCM and SKFCM are much faster than the 
proposed methods for all tested data sets, due to the proposed 

methods that consume much time for obtaining the true 
number of segments.  These times are acceptable for achieving 
more accurate and automatic MRI segmentation.  Future 
research in MRI segmentation should strive toward improving 
the accuracy, precision, and computation speed of the 
segmentation algorithms, while reducing the amount of manual 
interactions needed.  This is particularly important as MR 
imaging is becoming a routine diagnostic procedure in clinical 
practice.  It is also important that any practical segmentation 
algorithm should deal with 3D volume segmentation instead of 
2D slice by slice segmentation, since MRI data is 3D in nature. 
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